EXTREMOS CAMPOS ESCALARES
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Clasificacion de extremos escalares con determinante Hessiano.

Teorema:

Sea f(x,y) diferenciable y sea (xo, yo)un punto critico. Sea G(x,y) el determinante Hessionano definida como:
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Entonces se tiene que:

SiG(x.,y.)>0y % () >0 => minimo

SiG(X.,y.)>0y 4 (eyi<o = méximo

SiG(x,,Y.)<0 =—> punto silla

SiG(x.,Y¥.)=0 (noaportainformacion)



Extremos escalares (sujeto a condiciones)

Multiplicadores de Lagrange

Muchos problemas de optimizacién presentan restricciones o ligaduras en los valores de las variables, para su resolucién
nos ayudaremos del Teorema de Lagrange.

Teorema de Lagrange:

Sea f(x,y) con primeras derivadas continuas. Sea una superficie con G(x,y)=0 en el dominio de f que pasa por (x. , ) de

manera que gé_é(wq Z o0 ¥ ‘ET;’(MJ # o Entonces, si f es restringida a los puntos de G presenta extremos en (x., y.)
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y se tiene:
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Para hallar los puntos criticos (x., y.) se establece el siguiente sistema
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G(X‘xj) =0

En la practica, para resolver este tipo de cuestiones utilizaremos la Ecuacion Lagrangiana:

L (¥, ) = f (x,y) - AG (x,y)

Entonces, tendremos de nuevo 3 ecuaciones
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